Structure of Bromotris(triphenylphosphine)rhodium(1) by Extended X-Ray Absorption Fine Structure (EXAFS)

By JOSEPH REED and P. EISENBERGER (Bell Laboratories, Murray Hill, New Jersey 07974)

Summary The previously unknown interatomic bond distances and co-ordination geometry of bromotris-(triphenylphosphine)rhodium(I), [RhBr(PPh₃)₃], have been determined by a new structural technique, extended X-ray absorption fine structure.

THE new analysis technique, extended X-ray absorption fine structure (EXAFS), has been used to determine interatomic distances in iron-sulphur proteins,¹ copper salts in aqueous solutions,² and a polymer-bound rhodium(I) catalyst.³ We report here determination of the interatomic bond distances and co-ordination of bromotris(triphenylphosphine)rhodium(I) by EXAFS. Structural data for this complex have not been reported, although the structure of the chloro-analogue⁴ (Wilkinson's catalyst) has been determined.^{5,6} There appears to be only one report of a structure in which an Rh^I-Br distance has been determined.⁷ The catalytic activities of [RhX(PPh₃)_a], where X = Cl or Br, are expected to be similar, suggesting the need for structural data on rhodium(I) systems containing bromine and phosphine ligands.⁸

The EXAFS experiments were performed with synchrotron radiation at the Stanford Synchrotron Radiation Project.⁹ The current theoretical view of EXAFS¹⁰ is that the modulation of the X-ray absorption coefficient, $x = (\mu - \mu_0)/\mu_0$, is due to interference between the backscattered and outgoing photoelectrons in the photoabsorption matrix element, where μ_0 is the absorption coefficient of an isolated atom. Thus, the modulation

FIGURE 1. Fitting results: (A) the Rh-EXAFS in [RhBr(PPh₃)₃]; (B) the Br-EXAFS in [RhBr(PPh₃)₃]; solid lines, experimental data; broken lines, fit.

 $\Delta \mu/\mu$, of the X-ray absorption coefficient of an atom is given by equation (1), where N_1 is the number of scattering

$$\Delta \mu/\mu = \sum_{\mathbf{j}} N_{\mathbf{j}} |f_{\mathbf{j}}(k,\pi)| \exp(-2\sigma_{\mathbf{j}}^{2k^{2}}) \sin[2kR_{\mathbf{j}} + \phi_{\mathbf{j}}(k)]/R_{\mathbf{j}}^{2k}$$
(1)

atoms j at a distance R_j from the absorbing atom with a Debye–Waller like factor of $\exp(-2\sigma_j^2k^2)$.

The $\phi_i(k)$ and $f_i(k,\pi)$ terms are energy-dependent phase shifts and amplitude functions for the scatterers respectively and k is the wave vector of the emitted photoelectron.

In the data analysis,¹¹ theoretical phase shifts and amplitudes were used to fit the data to equation (1) and the measured EXAFS for Rh and Br in [RhBr(PPh₃)₃] (Figure 1). The Fourier transforms of the data in Figure 2 show that for the Rh-EXAFS in [RhBr(PPh₃)₃], there are two peaks, Rh-P and Rh-Br, indicative of multiple distances. In the Br-EXAFS the Br sees only the rhodium atom as a nearest neighbour, thus giving rise to a single frequency, and hence a single peak and distance in the analysis.

FIGURE 2. (A) Fourier transform of the Rh-EXAFS in [RhBr-(PPh₃)₃]; (B) Fourier transform of the Br-EXAFS in [RhBr-(PPh₃)₃]

We have, therefore, two independent results with which to confirm the Rh-Br distance. The results of fitting the Rh-EXAFS and Br-EXAFS data for [RhBr(PPh₃)₃] are shown in Table 1. The results gave three distinct deter-

TABLE 1. Interatomic distance in [RhBr(PPh₃)₃]₃ by analysis of the Rh-EXAFS and Br-EXAFS

Rh-EXAFS		Br-EXAFS	
	Method 1ª	Method 1	Method 2
Rh-Br	[1] ^b 2·540 (8)	2·536 (8)	2.535 (8)
Ph-P(1)	$\begin{bmatrix} 1 \end{bmatrix} 2.18 (1)$		
Rh-P(2)	$\begin{bmatrix} 2 \end{bmatrix} 2 \cdot 31 (1)$		

^a Method 1, fitted function, equation (1); Method 2, empirical method. b Number of bonds of this type.

minations of the Rh-Br distances, two of which were obtained from independent experiments and a third from an empirical data analysis program. The Rh-Br distances were 2.540, 2.535, and 2.536 Å.

The Rh–P distances were 2.18 and 2.31 Å, which were determined by fitting the Rh-EXAFS data with theoretical Rh-P and Rh-Br phase shifts and amplitudes.

The fitting technique also gave information about the co-ordination number of atoms attached to the rhodium (absorber) atom. In Figure 3 the sum of the squares of the

FIGURE 3. Plot of χ^2 (sum of squares of residuals) vs. P:Br ratio. χ^2 minimum occurs at a P:Br ratio of 3:1.

fit residuals (χ^2) is plotted for several values of $N_{\rm P} = N_{\rm P(1)}$ $+ N_{P(2)}$ and N_{Br} where N_j is the number of scattering atoms j at a distance R_j to the absorbing atom. In this fit, which minimized at $N_{\rm P}=3$ and $N_{\rm Br}=1$, only integral $N_{P(1)}$, $N_{P(3)}$, and N_{Br} values were used.

TABLE 2. Comparison of distances in [RhBr(PPh₃)₃] and RhCl(PPh_a)₃]

	[Rł	nCl(PPh ₃) ₃]	[RhBr- (PPh)]	$[RhBrP(C_{6}H_{4}-CH(CH_{2}-c)]$
	X-Ray ^a	EXAFS	EXAFS	X-Rayb
Rh-X Rh-P(1) Rh-P(2)	$2.37 \\ 2.214 \\ 2.33$	$\begin{array}{c} [1]^{\circ} \ 2 \cdot 35(1) \\ [1] \ \ 2 \cdot 23(1) \\ [2] \ \ 2 \cdot 35(1) \end{array}$	$\begin{matrix} [1]^{\rm c} \ 2 \cdot 54(1) \\ [1] \ 2 \cdot 18(1) \\ [2] \ 2 \cdot 31(1) \end{matrix}$	$\begin{matrix} [1]^{\rm c} \ 2{\cdot}587(3) \\ [1] \ 2{\cdot}176(10) \end{matrix}$

Ŧ

^a From refs. 5 and 6. ^b From ref. 7. ^c Number of bonds of this type.

In the similar chlorotris(triphenylphosphine)rhodium(I) complex,¹² the distances which were determined by the Rh-EXAFS yielded results which were in agreement with those determined by X-ray crystallography^{5,6} (see Table 2). In [RhBr(PPh₃)₃] as in [RhCl(PPh₃)₃], two of the Rh-P distances are longer than the third. This suggests that there must be an electronic effect, causing the trans influence of P to be greater than that of Br. The geometry of the co-ordination polyhedron about the rhodium atom in [RhBr(PPh₃)₃] was not determined by the EXAFS technique. However, in view of the d^8 electronic configuration, and the X-ray structure of [RhCl(PPh₃)₃], [RhBr- $(PPh_3)_3$ is considered to be approximately square planar.

This technique and results reported herein demonstrate the practical application of EXAFS to the solution of structure problems, as a supplement to X-ray crystallography.

(Received, 21st June 1977; Com. 614.)

- ¹ R. G. Shulman, P. Eisenberger, W. E. Blumberg, and N. A. Stombaugh, Proc. Nat. Acad. Sci. U.S.A., 1975, 72, 4003.
- ² P. Eisenberger and B. M. Kincaid, Chem. Phys. Letters, 1975, 36, 134.
- ³ J. Reed, P. Eisenberger, B. K. Teo, and B. M. Kincaid, J. Amer. Chem. Soc. 1977, 99, 5217.. ⁴ J. F. Young, J. A. Osborne, F. H. Jardine, and G. Wilkinson, Chem. Comm., 1965, 131.
- ⁵ M. J. Bennett and P. B. Donaldson, Inorg. Chem., 1977, 16, 655.
- ⁶ P. B. Hitchcock, M. McPartlin, and R. Mason, Chem. Comm., 1969, 1367.
- ⁷ C. Nave and M. R. Truter, Chem. Comm., 1971, 1253.

⁸ B. R. James, 'Homogeneous Hydrogenation,' Wiley, New York, 1973, p. 228. ⁹ S. Doniach, I. Lindau, W. E. Spicer, and H. Winick, J. Vac. Sci. Technol., 1975, 12, 1123; R. de Kronig, Physik, 1931, 70, 317;

B. Dollach, T. Endal, W. E. Spiel, and H. Winter, J. Val. (1997), 1971, 1973, 1981,

2795; P. A. Lee and G. Beni, *ibid.*, in the press.
¹¹ B. K. Teo, P. A. Lee, A. L. Simons, P. Eisenberger, and B. M. Kincaid, J. Amer. Chem. Soc., 1977, 99, 3854; P. A. Lee, B. K. Teo, and A. L. Simons, *ibid.*, p. 3856; P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Phys. Rev. Letters, 1976, 36, 1346.
¹² J. Reed, P. Eisenberger; B. K. Teo, and B. M. Kincaid, J. Amer. Chem. Soc., submitted for publication.